

Outline

- Introduction
- Components of a grazing system
- Grazing system options deciding which one is right for you
- Pros and cons to each system
- Management of the systems
- Summary
- Questions and discussion

Introduction

- Grass-based farming
- Done properly, very economical
 - ► Feed and labor = highest costs on farms
- ▶ Done properly, can result in high value products

What goes into a grazing system?

- Infrastructure
- Choosing grazing location
- Soil fertility
- Plant varieties
- Grass management
- Animals

Infrastructure

- ► Housing or shelter from elements
 - ► Full barn
 - ► Simple wind break
 - ► Trees?
- Laneways
- Entrances to paddocks
- Fencing
- Water availability

Choosing grazing location

- Is there are barn you wish to use on the property?
- How much land is available?
 - ► In close proximity to the barn?
 - ▶ Would animals have to cross the road to get from one paddock to the next or back to the barn?
 - Will you allocate some of this land to winter feed (hay) production or will it all be grazed?
- Is the land in a protected area or near wetlands?
 - Will you need manure management plan?
- Is there access to water?
 - ▶ Via hose? Well? Pond? Stream?
- Are there areas that are more suited to grazing as opposed to hay production?

Soil fertility

- Crucial in optimizing growth rates
 - Most desirable plant species like more neutral pH
- ► Take samples!
- Lime, fertilize, and manure spreading as necessary

PH - Soil Test (2015)

6.0

6.0

6.0

Road Map content @ OpenStreetMap contributors

Grower: Devine Farms Farm: Home Farm Field: Meadow street Area: 7.28 ac

Season: 2015 Min: 5.97 PH SCALE May: 6.02 PH SCALE Max: 6.20 PH SCALE

Season: 2015 Min Rate: 2,890.55 lb/ac Avg Rate: 3,416.43 lb/ac Max Rate: 4,464.33 lb/ac Total Nutrient: 24,887.54 l Applied Area: 7.28 ac

Order Id: 386778 Order Task Id: 1005271 Target pH: 6.8 Field Boundary

pH - Soil Test PH SCALE

- < 5.3 Very Low (0.0 ac) (0.0 %)
- 5.7 6.0 Medium (4.0 ac) (54.7 %)
- > 6.8 Very High (0.0 ac) (0.0 %)

Field Boundary

Lime Recommendation lb/ac

2890.5 (4.0 ac) (54.7 %) 3373.5 (1.2 ac) (17.2 %)

4464.3 (2.1 ac) (28.1 %

Soil fertility

As quality of field deteriorate (pH lowers), conditions favor weeds over desired plant species

Plant varieties

- What grasses, legumes, and weeds occur there naturally?
- Soil test results can help determine what varieties to choose if looking to seed or improve the growth of what you already have
- ▶ What's the best tool for weed management?

Grass measurement

- Weekly!
- Vital to keeping quality right
- Various measurement options
- Decision-making aid
 - ▶ When to graze
 - ▶ When to rest
 - ▶ When to harvest mechanically

If you're not measuring it, you're not managing it!

PHASES OF PLANT MATURITY

Animals

Matching the species (and breeds!) and number of animals to the grass availability

- Multi-species grazing?
 - ▶ Pros and cons to this?
- Match animals' stage of production/needs with grass availability

How to choose a type of grazing system

Stocking

Stocking RATE:

Describes how much livestock a farm can accommodate given pasture availability

Stocking DENSITY:

Describes concentration of animals on a given pasture at a **given time**

Decrease Stocking Density if:	Increase Stocking Density if:
Poor pasture quality	Excellent pasture quality
No pasture rotation	Rotating several pastures
Stony, ledgy hillside soils	Well fertilized land with low erosion potential
Regrowth is abnormally slow	Animals are given supplemental feed
Low rainfall or excessively drained (i.e. dry) area	Animals are avoiding species you would like them to eat

Choosing a grazing system

- 1. Continuous grazing
 - Improved continuous grazing
- 2. Rotational (or controlled) grazing
 - ► Management-intensive grazing (MIG)

Choice in system dependent on farmer's desire to manage GRASS

Increased potential of pastures and quality/quantity of outputs

Continuous grazing

- Most common grazing system in USA
- Stocking densities must be kept low
- ▶ Risk of management mistakes minimized
 → 1 decision on when to begin and 1 decision on when to end grazing each year
- Avg daily rates of herbage removal per acre small
 - Animals have access to entire acreage

Continuous grazing

- Advantage: lowest cost in terms of infrastructure, low labor
- Disadvantages:
 - ► Low outputs → majority of animals grown in this scenario require grain finishing (\$\$\$)
 - ► Can result in less desirable plant species
 - Without restriction, livestock will eat most palatable forage first
 - ► If repeatedly grazed w/o allowing time for roots to recover and leaves to regrow = forage death
 - ▶ The plants not eaten by livestock mature and go to seed
 - Populations of undesirable plants increase while preferred are eliminated
 - ▶ Reducing quality of forage in pasture

Continuous grazing

Disadvantages

- ▶ Disturbed areas (usually drought or over grazing) likely won't heal regardless of lowered stocking rates or delayed entry dates
- ► Risk of damage to plants under drought very high in *preferred* areas
 - ► Solution?
 - ► Where possible, shift to 'improved continuous' for several years to enhance recovery
 - ▶ If not possible, switch individual pastures to seasonal rotation to enhance plant vigor

Improved continuous grazing

- Slightly more structured than traditional continuous
 - Allows for a rest period
- Advantages
 - Still fairly low-key in terms of labor
 - ► Slightly more intense than traditional continuous
 - ► Better grass utilization
 - Gives some areas a rest, allowing for better regrowth
- Disadvantages
 - Similar to those of continuous grazing just not as pronounced
 - Limited options should inclement conditions occur on farm

Basic rotational grazing

- Animals graze a paddock several days before moving to new area, resting period for grass around 30 d (depending on re-growth)
- ► How system managed influences production
- Well-managed rotational grazing = you evaluate the nutritional and forage needs of your animals, assess forage quality and quantity, regulate acreage of access and control parts of pasture that animals have access to

Basic rotational grazing

- Advantages
 - Increases pounds of animal production per acre
 - Improve pasture quality
 - Greater reduction in weeds
 - ► Requires less land area than continuous grazing systems
 - Can monitor animals more closely (seeing them more frequently)
- Disadvantages
 - Requires increased management
 - ► Grass measurement
 - ▶ Water access
 - ► More fencing
 - ► Labor to move fencing

Hey, I just wanted to let you know that I found a hole in the fence

Rotational grazing: managementintensive grazing (MIG)

- Same premise as rotational grazing, just intensified management
- Grazing and resting several pastures in sequence
- Rest period allows plants to recover before grazed again
- Doubling the forage use on a given acreage is often possible with the change from continuous to managementintensive rotational grazing

*** Considerable profit potential for the producer willing to commit an initial capital investment and increased management time***

Effects of grazing system on the plant

Source: NRCS

Strip grazing - part of rotational and intensive rotational grazing

160-acre tract, 12 paddocks, 13.3 acres each

Considerations for rotational/intensive grazing

Advantages	Drawbacks
Reduces supplemental feeding and pasture waste	Typically entails more management, time, and labor than continuous grazing
Improves forage composition and yield	Can put strain on pasture longevity if grazed too frequently
Improves animal waste distribution	Requires good understanding of forage growth cycles and regrowth
Minimizes daily fluctuations in intake and quality feed	More animals in smaller areas can result in mud and soil compaction - must be monitored
Allocate pasture to animals more efficiently based on nutritional needs	Requires more fence and water facilities

- ► Follow a grazing rotation plan for paddocks
 - ► Important to follow WHERE the grass is, not get stuck in particular paddock order

- Can be high stress on paddocks if not managed correctly
- Grazing at the optimal level of cover and MOVING animals at desired residual (post-grazing height)

How long can your animals stay in a

particular paddock?

Need to determine your animals' needs

Usually ~3% BW in DM depending on animals' status

Cows	Status	Weight lb	weight kg	% BW fed	kg DM/day
3	lactating	1200	545	0.03	49
1	lactating	1550	705	0.03	21
2	steers	1000	455	0.02	18
1	yearling	1000	455	0.02	9
3	open	1550	705	0.02	42
1	open	1200	545	0.02	11
	-				151

They could stay in 'cow 2C' for ~2.5 days then would need to move to the next paddock at ~ 1400kg DM/hectare

- Drainage
 - ► Most farmers will know which fields retain (or don't retain) water
 - Especially in spring: wet fields + high stocking densities = poaching and damage to field
- On/off grazing
 - Successful way to retain animals at pasture during periods of heavy rainfall
 - ► Also strategy for earlier turnout of animals on heavier soil types
 - Animals let out to grass with an appetite
 - As soon as they seem finished and start to lie down, take them off and back to the barn
 - ▶ Most beneficial to do 2x/d (can be same field) to maintain DMI

- Be ready to deal with excess spring growth
 - Don't waste!
 - Save for winter feed
 - ► Contribute to organic matter in soil

- Protecting the grass
- Back-fencing paddocks that have just been grazed
- Utilizing designated pathways and roadways
 - Especially relevant for dairy systems
 - ▶ If water/shelter is in a dif location than the paddock

Summary

- Continuous and rotational grazing systems
- Decision on system depends on interest in managing grass
- With rotational grazing come many incentives but there is inevitably a higher level of management required
 - ► Farmers need to be prepared to take these on for the system to succeed

