Nutritional Needs and Challenges of Animals Raised on Pasture

Karen Hoffman
Resource Conservationist – Animal Science/Grazing Management
USDA-NRCS
Norwich, NY

Pasture and woody browse important

Cow-calf and ewe-lamb pairs usually on pasture

Grass-finished growing in popularity

Challenges

• What are they eating?
• How much are they eating?
• What is the quality of what they are eating?
• Does it meet their needs?
• What else should I feed?
• How do I know???

Some of these are or will be answered by other presenters
Typical Forage Quality

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Pasture</th>
<th>Hay</th>
<th>Haylage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter %</td>
<td>20-25</td>
<td>88-92</td>
<td>35-40</td>
</tr>
<tr>
<td>Crude Protein %</td>
<td>20-30</td>
<td>8-14</td>
<td>14-20</td>
</tr>
<tr>
<td>TEEN (Mcal/kg)</td>
<td>65-75</td>
<td>55-65</td>
<td>60-70</td>
</tr>
<tr>
<td>Net Energy (Mcal/kg)</td>
<td>50-60</td>
<td>40-50</td>
<td>40-50</td>
</tr>
<tr>
<td>ADF (%)</td>
<td>20-30</td>
<td>30-40</td>
<td>30-40</td>
</tr>
<tr>
<td>NDF (%)</td>
<td>40-50</td>
<td>55-65</td>
<td>45-55</td>
</tr>
</tbody>
</table>

Also need to know mineral content – Ca, P, Mg, K, trace minerals – will vary with soil type, fertility, and soil health

* Acid Detergent Fiber
** Neutral Detergent Fiber

Protein

- Protein from pasture > animal req’ts
 - 20 – 30% crude protein from pasture
 - Most livestock need 16-17% or less
- Protein from pasture > rumen bacteria req’ts
 - 70 – 80% degradability
- Ruminants will use energy to eliminate excess protein
- Results in high milk urea nitrogen (MUN) in dairy animals

How Excess Degradable Protein Wastes Energy

- **Degradable Protein**
 - Used by microbes
 - Not used
 - protein + carbohydrates
 - microbial protein - used by animals
 - converted to ammonia
 - energy
 - ammonia into blood
 - liver converts to urea

Non-Fiber Carbohydrates (NFC)

- Source of energy
- Sugars and starches from grain
 - Corn, barley, oats, etc.
- Rumen bugs match with protein
 - More microbial protein – feeds the animal
Non-Fiber Carbohydrates (NFC)

• Dairy
 • Critical for high milk production
 • Caution – no grain not easy
• Beef
 • Only if gains are low
 • Sheep, goats
 – Breeding, lactating w/multiples, weaned lambs or kids

There may be some adaptation in the rumen of 100% grass-fed animals to utilize more N without added NFC’s

Non-Fiber Carbohydrates (NFC)

• Swine
 • Grain higher proportion of diet
• Poultry
 • 70-90% of diet with insects, grass, etc balance

Neither of these species needs NFC’s for rumen or excess pasture protein issues
They are non-ruminants, so pasture is supplemental protein

High Quality Forage

• How much forage can they eat?
 • Cattle – 2.5-3.5% of body weight
 • Sheep – 2.5-3.5% of BW
 • Goats – 3.5-5.5% of BW
 • Swine – 1.0-2.0% of BW
 • Poultry - ?? 5-20% of total intake

Depends on stage of production – growing vs lactating vs “dry”

Nutritional Requirements and Rations

• National Research Council publications
 • https://www.nap.edu/collection/63/nutrient-requirements-of-animals
• Ration balancing programs
 • Some free, some cost $5
 • Many universities have easy to use programs
 • Google “beef cattle/sheep/goat/poultry/swine ration formulation software”
 • Goats
 – Langston University: http://www.langston.edu/pl/rating
 • Service provided by feed companies, consultants, veterinarians, Cooperative Extension, etc.
Beef Requirements vs. Pasture Quality

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Cow/Calf</th>
<th>Steer*</th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP%</td>
<td>8 - 12</td>
<td>11.7</td>
<td>20.0</td>
</tr>
<tr>
<td>NE_G, Mcal/lb</td>
<td>0.46</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>NE_M, Mcal/lb</td>
<td>0.55</td>
<td>0.74</td>
<td>0.70</td>
</tr>
<tr>
<td>TDN%</td>
<td>58</td>
<td>70</td>
<td>68</td>
</tr>
</tbody>
</table>

* 600 LB – 8 months age, 2.5 lb/day ADG

Sheep Requirements vs. Pasture Quality

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Ewe/Lambs*</th>
<th>Lamb#</th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP%</td>
<td>15.0</td>
<td>11.7</td>
<td>20.0</td>
</tr>
<tr>
<td>NE_G, Mcal/lb</td>
<td>0.31</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>NE_M, Mcal/lb</td>
<td>0.25</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>TDN%</td>
<td>65</td>
<td>77</td>
<td>68</td>
</tr>
</tbody>
</table>

* 164 lb w/twins – early lactation
Ram lamb – 88 lb finishing, 0.5 lb ADG

Goat Requirements vs. Pasture Quality

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Dairy*</th>
<th>Meat#</th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP%</td>
<td>12-17</td>
<td>15-17</td>
<td>20.0</td>
</tr>
<tr>
<td>TDN%</td>
<td>65</td>
<td>67</td>
<td>68</td>
</tr>
</tbody>
</table>

* Doe in lactation
55 lb Boer, 0.25 lb ADG

Parasites!

* Sheep and goats are very susceptible to parasites on pasture
 * Barber pole worm (H. contortus), stomach worms (many types), meningeal/deer worm (P. tenuis), etc.
 * Management can minimize
 * Taller grazing height – parasites on plants up to 4" above ground
 * Longer pasture rotations
 * Multi-species grazing
 * Selection for resistance
 * Resistance to dewormers
 * www.ansci.cornell.edu/sheep for more info
Parasite Issues

- Cattle – minor issue
 - Roundworm, flukes, tapeworms
 - Same lifecycle as sheep parasites, but species specific
 - Dewormers typically used twice in spring – resistance issue
 - Young animals most susceptible – cattle become more resistant with age
 - Pasture management
 - Young animals on “clean” pasture
 - Don’t overgraze

Poultry and swine

- Neither of these species are true “grazers”
 - Grain, insects, food waste, etc.
 - Do benefit from being on pasture
 - Poultry – eat small amounts of grass & clover
 - Swine – root in soil for grubs and insects, some grass, weeds – “pigness”

Supplementation

- Dilute the pasture protein
 - Feed a little dry hay
 - Lower protein than pasture
 - Substitutes for pasture intake

- Use the pasture protein
 - Feed a little ground corn
 - Provides non-fiber carbs (NFC)
 - Rumen bugs use to make more bugs

Minerals
Plant Minerals
- Most available form for animals
 - Fresh forage vs. fermented
 - Depends on soil fertility
 - Depends on soil health
 - Depends on plant and root structure

Supplemental Minerals
- Conventional nutrition
 - Major minerals
 - Supplement w/pre-mix or complex mixtures
 - Forages not tested for all trace minerals, vitamins
- Organics
 - Reliance on plants
 - Look to soil mineralization, pH, and OM
 - Long-term

Force-Feed or Free-Choice?
Free-choice
- Mix minerals with salt to limit intake
- May either encourage or limit intake of other minerals
- Minerals all taste like salt
 - Animals can’t associate feedback with flavor
Supplementation

- **Salt**
 - Supply free-choice
 - Loose vs. blocks
 - Self-liming
 - Mix in with grain
 - Limits intake

- **Minerals**
 - Can be in trace mineral salt block
 - Specially formulated based on forage tests
 - Mix in with grain or free choice

Immune System & Minerals

- **Major minerals**
 - Ca, P, Mg, K, Na, Cl, S
 - Acid-base balance, osmotic pressure, membrane electrical potential and nervous transmission

- **Trace minerals**
 - Co, Cu, I, Fe, Mn, Mo, Se, Zn
 - Components of enzymes and enzyme co-factors, hormones

These systems are inter-related in support of the immune system – need to consider holistic viewpoint

Grass tetany

- Also known as “grass staggers”
- Caused by low Mg in spring pasture
 - Cool, wet weather
- Animals have difficulty standing, walking
 - Mg needed for muscles to contract
- Preventable by increasing Mg in diet
 - Magnesium oxide or sulfate

White muscle disease

- Caused by low Se in diet
- Northeast soils deficient in Se = forages low
- Need to supplement at correct level
- Can be toxic
 - FDA sets limit of 0.3 mg/kg (ppm) in feed
- Calves, lambs, and kids can be born with disease
 - Lesions in skeletal and/or heart muscle
 - Can cause death if not diagnosed and treated
 - Make sure Mama is getting enough
 - Can inject a Se/Vitamin E product in late pregnancy to boost
Vitamins

- A, D, E
- Function in metabolic pathways, immune cell function, gene regulation
- Grazing Season
 - Vitamin A – precursor is ß-carotene
 - Vitamin D – sunlight & grass
 - May decrease slightly in diet

Sodium Bicarbonate

- Helps to buffer the rumen
- Fermented forages
 - Wet
 - Finely chopped
 - Intake limited
 - High grain
 - Pasture?

Sodium Bicarbonate on Pasture

- Pasture is a neutral pH feed
- Pasture has a long particle length
- Rapid rate of digestion
 - Low fiber
 - Wet

Kelp

- Approved for organics
- Source of minerals, vitamins, anti-oxidants
- High iodine content
 - Not problematic
- Limited research
 - Boosts immune system
 - Reduces pinkeye
Kelp

From www.thorvin.com
Not intended as a product endorsement

Multi-species Grazing

- Benefits
 - More uniform grazing
 - Different preferences for plants
 - Avoid own manure, but not of other species
 - Better animal performance
 - Manage parasites
 - Predator protection

- Options
 - Different species grazing together
 - Leader-follower system
 - Which is better?
 - Depends on your goals and livestock types

Species Together

- Beef and sheep or goats
 - Challenge with minerals – copper
 - Tend to have species “cliques”
 - Bovine malignant catarrhal fever
 - Uncommon, but vets may have concerns
 - Spread from sheep to cattle during lambing in fluids
 - Important to separate

- Beef/sheep/goats and poultry
 - Poultry can free-range days, confined at night
 - Break up manure – eat fly larvae, slugs
 - Reduced poultry grain consumption
Species Together

- Sheep and goats
- Same mineral
- Goats can work on woody plants, sheep on grasses and forbs
- “Personality conflicts” may occur

Leader-follower species

- Which comes first?
 - Beef then sheep/goats
 - Sheep/goats then beef?
- Anything can be followed by poultry
- Pigs can follow where you want disturbance

Who’s First?

- Advantages to leader grazing
 - Better quality forage and availability – can select preferred species
 - May have better animal performance
 - Sheep eat tallest forage – reduce parasite intake in bottom 4”
 - Beef “vacuum” parasites, reducing larva concentration
- Disadvantages to follower grazing
 - Lower quality forage, availability, selection

“Strategic Rotational” Stocking Method

Regardless of any system you choose, pastures will be utilized better.

45-60 day rest period for sheep
20-30 day rest period for cattle